skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Boose, Emery R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Nature‐based climate solutions (NCS) are championed as a primary tool to mitigate climate change, especially in forested regions capable of storing and sequestering vast amounts of carbon. New England is one of the most heavily forested regions in the United States (>75% forested by land area), and forest carbon is a significant component of climate mitigation policies. Large infrequent disturbances, such as hurricanes, are a major source of uncertainty and risk for policies relying on forest carbon for climate mitigation, especially as climate change is projected to alter the intensity and extent of hurricanes. To date, most research into disturbance impacts on forest carbon stocks has focused on fire. Here, we show that a single hurricane in the region can down between 121 and 250 MMTCO2e or 4.6%–9.4% of the total aboveground forest carbon, much greater than the carbon sequestered annually by New England's forests (16 MMTCO2e year−1). However, emissions from hurricanes are not instantaneous; it takes approximately 19 years for downed carbon to become a net emission and 100 years for 90% of the downed carbon to be emitted. Reconstructing hurricanes with the HURRECON and EXPOS models across a range of historical and projected wind speeds, we find that an 8% and 16% increase in hurricane wind speeds leads to a 10.7‐ and 24.8‐fold increase in the extent of high‐severity damaged areas (widespread tree mortality). Increased wind speed also leads to unprecedented geographical shifts in damage, both inland and northward, into heavily forested regions traditionally less affected by hurricanes. Given that a single hurricane can emit the equivalent of 10+ years of carbon sequestered by forests in New England, the status of these forests as a durable carbon sink is uncertain. Understanding the risks to forest carbon stocks from disturbances is necessary for decision‐makers relying on forests as a NCS. 
    more » « less
  2. Abstract Forest and freshwater ecosystems are tightly linked and together provide important ecosystem services, but climate change is affecting their species composition, structure, and function. Research at nine US Long Term Ecological Research sites reveals complex interactions and cascading effects of climate change, some of which feed back into the climate system. Air temperature has increased at all sites, and those in the Northeast have become wetter, whereas sites in the Northwest and Alaska have become slightly drier. These changes have altered streamflow and affected ecosystem processes, including primary production, carbon storage, water and nutrient cycling, and community dynamics. At some sites, the direct effects of climate change are the dominant driver altering ecosystems, whereas at other sites indirect effects or disturbances and stressors unrelated to climate change are more important. Long-term studies are critical for understanding the impacts of climate change on forest and freshwater ecosystems. 
    more » « less
  3. null (Ed.)